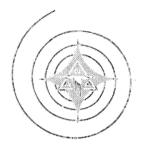
32


Copy No.

SID 63-10

PRETEST REPORT FOR THE STATIC AND TRANSIEN'
PRESSURE TESTS OF THE 0.055 SCALE APOLLO
PSTL-2 MODEL IN THE AMES RESEARCH CENTER
9 x 7 AND 11 x 11 FOOT WIND TUNNELS

NAS9-150

August 1963

(NASA-CR-154572) PRETEST REPORT FOR THE N78-70040 STATIC AND TRANSIENT PRESSURE TESTS OF THE 0.055 SCALE APOLLO PSTL-2 MODEL IN THE AMES RESEARCH CENTER 9 BY 7 AND 11 BY 11 FOOT Unclas WIND TUNNELS (North American Aviation, Inc.) 00/12 33742

(CATEGORY)

NORTH AMERICAN AVIATION, ELC. SPACE and INFORMATION SYSTEMS DIVISION

32

Copy No.

SID 63-1027

PRETEST REPORT FOR THE STATIC AND TRANSIENT PRESSURE TESTS OF THE 0.055 SCALE APOLLO PSTL-2 MODEL IN THE AMES RESEARCH CENTER 9 x 7 AND 11 x 11 FOOT WIND TUNNELS

NAS9-150

August 1963

NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

FOREWORD

This report was prepared under NASA contract NAS9-150 by the Wind Tunnel Test Unit of Apollo Aerodynamics, Space and Information Systems Division, North American Aviation.

The basic test program including models, drawings, photographs, and run schedule is unclassified; all identifiable test results are classified CONFIDENTIAL.

CONTENTS

Section													Page
	INTRO	DUCTION	•	•	٠	•	•	•	•	•	•	•	1
1	MODE	L DESCRIPTI Full-Scale		• ensi	• ons	•	•	•	,• .•	•	•	•	2
11	INSTRU	JMENTATIC	N	•		•	•	•	•	•	•	•	5
111	TEST P	ROCEDURE	•	.•	•	.•	.•	•	•	•	•	•	6
IV	DATA	REDUCTION Nomenclat Steady-Sta Transient	ure ite Pi			•	•	•	•	•	•	•	8 8 9 10
٧	DATA	TRANSMITT	AL	•	•	•	•	•	•	•	•	•	12
Figure			I	LLU	JS TR	ATI	ONS						Page
1 2 3 4 5 6	Mode Mode Mode Orific	guration Sl l Assembly l Installation l Instrume ce Number dary Layer	7 • on ntatio ing Sy	yster es		LES	•	•	•	•	•	•	20 21 27 29 31 32
Number					,1,7110								Page
1 2 3 4 5	Locat Conne Conne Locat Run S	tion of Statection Formation of Transchedule	mat format forma	or Se or Se t Pr	caniv caniv essu	valve valve re In	Nur Nur nstru	nber nber ımen	1 2 tatio	•	•		13 15 16 17 18

INTRODUCTION

This report contains information necessary for the accomplishment of wind tunnel tests of the 0.055 scale Apollo PSTL-2 model in the Ames Research Center 9×7 and 11×11 foot wind tunnels. The tests are scheduled for a three week period during October and November 1963.

The primary test objective is the determination of the effects of angle of attack and Mach number changes on the distribution of static pressure over the surfaces of the Apollo payload and the forward section of the S-IVB booster. The model will include docking windows, venting ducts, CM/SM (command module, service module) umbilical housing, and RCS (reaction control system) engine pods. The engine pods will be tested in two circumferential positions. Boundary layer velocity distributions will be determined as a function of Mach number at two axial locations on the service module by means of a pair of surface mounted pitot tube rakes.

Additional test objectives concern the measurement of acoustic load levels at selected positions on the model surface. Specifically, these objectives are:

- 1. The determination of the spectral distribution of pressure on the spacecraft and on the LEM (lunar excursion module) adapter as a function of angle of attack and Mach number.
- 2. The measurement of transient pressure data at the CM/SM shoulder for the evaluation of the effect of changes in RCS engine pod location.
- 3. The measurement of additional acoustic load data on the command module for the refinement of heat shield loads.

The model will be tested at 13 Mach numbers in the range 0.5 to 2.4 at angles of attack from -4 to +15 degrees.

I. MODEL DESCRIPTION

The 0.055 scale PSTL-2 model represents the Apollo payload, plus the forward section of the S-IVB boost stage. The command module, service module, LEM adapter, and forward section of the S-IVB boost stage comprise one assembly when mounted on the support sting. The launch escape tower and rocket assembly can be removed and replaced with a microphone probe for the measurement of tunnel background noise. The RCS engine pods are mounted at model station X/D = 1.134 and are circumferentially displaced 90 degrees from one another. The normal orientation for the pods is such that they are displaced 7 degrees, 15 minutes from the horizontal and vertical model axes. Provision is made to test the model with the pods located on the model axes as well as in the normal position.

The nomenclature and dimensions of all major components making up the complete model are presented in this section and in Figures 1 and 2. The three configurations to be tested are made up of one basic assembly with two minor modifications as follows:

Configuration	Components	Description		
1	$^{\mathrm{E}_{66}\mathrm{T}_{29}\mathrm{C}_{42}\mathrm{S}_{7}\mathrm{B}_{9}\mathrm{I}_{3}\mathrm{R}_{6}}$	Basic PSTL-2 model		
2	E ₆₆ T ₂₉ C ₄₂ S _{7R} B ₉ I ₃ R ₆	Basic PSTL-2 model with RCS engine pods rotated onto model horizontal and vertical axes		
3	$\mathrm{M_{1}C_{42}S_{7}B_{9}I_{3}R_{6}}$	Basic PSTL-2 model with microphone probe replacing E ₆₆ T ₂₉ tower and escape rocket structure		

Figure 3 describes the model installation in the test section. Access doors to the internally mounted scanivalves and transducers are located on the right side of the model in the service module, LEM adapter, and booster sections. The instrumentation connections between the model and the sector mounted terminal board are shielded transducer leads. Because the pressure signals from the model taps are converted to electrical outputs within the model mounted scanivalves, no manometer leads extend outside the model.

The model stress analysis is reported in the structural analysis report. $^{\rm l}$

FULL-SCALE DIMENSIONS

Full-scale dimensions of the model components are presented in the following listing.

Escape Motor, E ₆₆	
Total length	279.67 in.
Diameter	26.00 in.
Diameter, rocket base	52.73 in.
Skirt flare angle	34.0 deg
Nose radius	2.0 in.
Nose angle	15.0 deg
Command Module, C ₄₂	
Max diameter	154.0 in.
Corner radius	7.7 in.
Afterbody semi-angle	33.0 deg
Radius of heatshield	184.8 in.
Tower Structure, T29	
Length	115,35 in.
Diameter of longitudinal members	3.51 in.
Diameter of cross members	2.51 in.
Service Module, S ₇	
Total length	182.40 in.
Diameter	154.00 in.
Service Module, S _{7R}	
Same as S ₇ with exception that RCS	
engine pods are rotated onto model	
horizontal and vertical axes	
Booster, B ₉ (S-IVB stage)	_
Total length	700.56 in.
Diameter	260, 00 in.

Structural Analysis of the 0.055-Scale Apollo Transient Pressure Model (PSTL-2). NAA S&ID SID 63-911 (July 1963).

Instrumentation Unit, I3	
Length	36.00 in.
Diameter	260.00 in.
Rockets, R ₆	
Four rocket engine pods on the service	
module. Location aft of command	61.37 in.
module-service module tangent point.	
Radial location	82. 75 deg
	172.75 deg
	262.75 deg
	352.75 deg
Microphone Noise Probe, M ₁	
Total length	43.17 in.
Maximum base diameter	5.86 in.
Probe diameter	1.37 in.

The PSTL-2 model is instrumented with 230 surface static pressure taps, 18 pitot pressure tubes contained in two 9-tube boundary layer rakes, and 26 flush mounted, fast response pressure transducers, for the measurement of transient pressures. Figure 4 is an instrumentation drawing showing the location of all taps, rakes, and transducers.

The surface static taps are identified and located in Table 1. The orifice numbers listed in the table are keyed to the tap positions on the model. Figure 5 presents the orifice numbering system.

The boundary layer rakes are sketched and located in Figure 6.

The entire 248 steady pressure measurements, including the rake pitot pressures, will be sensed by a model-mounted scanivalve assembly, which is composed of two banks of six valves each. Each of the 12 valves contains 24 pin positions of which 22 are available for the measurement of model pressures. The step-drive mechanism is synchronized in such a manner that one bank of valves is recording and stepping while the other bank is waiting. This provides a more acceptable pressure settling time that is the case if all 12 valves are stepped in unison. The formats for connecting the pressure taps to each of the two scanivalve banks are presented in Tables 2 and 3. Each valve module contains one temperature compensated Statham ±12.5 differential pressure transducer. The model surface orifices are connected to the scanivalves by means of stainless steel tubing of 0.065 o.d. and 0.051 I.D. The corresponding dimensions for the boundary layer rake tubes are 0.032 o.d. and 0.020 I.D.

Model transient pressures will be recorded by means of Photocon and Atlantic Research pick-ups. The primary instrumentation will be the Photocon cells. The Atlantic Research models are being employed as back-up instrumentation and are being located in a manner which will facilitate comparison of results obtained with the two transducer models. The two types of pick-ups are identified and located as shown in Table 4.

III. TEST PROCEDURE

With the first configuration installed in the test section, data will be obtained for several angles of attack at a single Mach number (see Table 5). This will be followed by a Mach number change, after which data will be taken for several angles of attack at the new Mach number. This process will continue until the Mach number schedule is completed, at which time a configuration change will be made and the process repeated.

Schlieren photographs will be obtained for configuration 1 at Mach number 1.15 and 1.80 at angles of attack -4, 0, 4, 9, and 15 degrees.

Several preliminary operations associated with the transient portion of the test will be necessary. All transducer cables and cable connectors will be checked by the North American Engineering Development Laboratory (EDL) and then shipped to Ames. The cables used for the PSTL-1 test at Ames will be used. Two 14-channel, extended range tape recorders will be supplied by EDL; one with FM record and one with AM record electronics. The tape required for the recorders will be supplied by NAA.

The procedures involved in conducting the transient portion of the test are as follows:

- 1. Determine the electrical frequency response of each Photocon measurement circuit from the tunnel to the input of the tape recorder. Disconnect the transducer cable at the junction of the Microdot and RG 58 A/U cables and inject a signal from an FC-110 calibrator. Check between the frequency limits 100 cps to 40 kcps. Reconnect the cables.
- 2. Pressurize the tunnel in stages, reading a d-c voltage output from each transducer at each stage. This will provide a transducer sensitivity calibration in volts/psi and will check for possible malfunction of transducers.
- 3. During the calibration runs for the determination of tunnel background noise levels, data will be gathered in three stages. With the noise probe installed on the model (configuration 3), one minute of electrical calibration signal will be recorded at 3 volts and 500 cps for the noise probe and 1 volt at 400 cps for the transducer. One minute of data recording system noise

will be recorded and 90 seconds of air-on noise probe and model transducer data will be recorded for the conditions listed in Table 5. During tunnel noise level runs, the noise probe output will be recorded on a channel normally used for one of the transducers now covered by the probe support cone.

4. During the actual data runs, data will be gathered as described in procedure number 3 above, with the exception that the electrical calibration signal will be 1 volt at 400 cps.

There will be no separate runs for transient and steady state pressure portions of the test; steady state data will be recorded, via the scanivalve/Beckman system, simultaneously, with the tape recording of the transient data.

IV. DATA REDUCTION

NOMENCLATURE

Model Components

CM Command Module

SM Service Module

LEM Lunar Excursion Module

RCS Reaction Control System

Model Component Coding

Escape Motor

C₄₂ Command Module

T₂₉ Tower Structure

S₇ Service Module

S7R Service Module

B9 Booster

I₃ Instrumentation Unit

R₆ Rocket Engine Pods

Microphone Noise Probe

Model Instrumentation

A₁ to A₆ Atlantic Research Transducers

numbers 1 to 6

P₁ to P₂₀ Photocon Transducers numbers 1 to 20

R₁₁ to R₂₉ Boundary Layer Rake Orifice

numbers 11 to 29

Model Coordinates

D	Maximum diameter of command module, 8.47 inches, model scale
x	Distance aft of command module actual nose, model scale inches
X_a	Full scale vehicle station decreasing aft from value $X_a = 1133.733$ at command module actual nose, full scale inches
Ø	The angle used for locating pressure taps. It increases positively toward the +Y axis from zero at the -Z axis, degrees. See Figures 1 and 2 for model axis system.

Transient Pressures

P	Root-mean-square value of fluctuating pressure, lb/in. ²
SPL	Sound pressure level, db, re, 0.0002 dynes/cm ²

STEADY-STATE PRESSURES

The raw pressure data will be reduced to coefficient form according to the equation:

$$C_p = \frac{P - P_o}{q_o}$$

in which

 C_p = Pressure coefficient at a given tap location

P = Pressure at the given tap location, lb/ft^2

 P_o = Free stream static pressure, lb/ft^2

 $q_0 = Free stream dynamic pressure, <math>lb/ft^2$

The steady-state pressure data will be reduced to coefficient form by Ames personnel and will be presented to North American via card or tape medium. The listing format on the tape should be such that the data for all pressure taps at a given model station will appear on a single card. This format differs from one in which data from taps at several model stations' appears consecutively on the tape or together on a single card. For instance, orifice numbers 91, 93, 95, 97, and 99 should appear in succession on the tape, rather than orifice numbers 91, 101, 111, 121, 131 (see Table 1).

A sample of the format for the final steady-state pressure coefficient listing is presented in Table 6.

TRANSIENT PRESSURES

All recording, reduction, and analysis of the unsteady pressure data will be performed by NAA personnel. The following paragraphs briefly outline the data reduction stages.

Background Noise

The overall and 1/3-octave band levels of fluctuating pressure will be determined and recorded as \overline{P} (psi rms) and SPL (sound pressure level, db, re, $0.0002 \, \text{dynes/cm}^2$).

Boundary Layer Noise

- 1. The overall and 1/3-octave band pressure levels will be determined. The pressure power spectral density will be computed for selected test conditions.
- 2. The effect of background noise levels on the measured boundary layer levels will be determined and appropriate corrections applied as necessary.
- 3. Sound pressure levels at 1/3-octave band frequencies for all Mach numbers at zero angle of attack will be plotted. Overall sound pressure levels will be plotted against body station for all Mach numbers.

Data Analysis and Translation of Sub-Scale Model Data to Full-Scale Model

From analysis of the model data, and by use of the following scaling relationships, the amplitude and frequency distribution of pressures on the spacecraft and on the LEM adapter will be determined as a function of

Mach number and angle of attack. The full-scale flight condition will be computed at all Mach numbers for $\alpha = 0$ degree, as will the conditions of M and α which produce maximum levels.

Frequency:
$$F_2 = F_1 (d_1/d_2) (v_2/v_1)$$

$$1/3$$
-octave band levels: $\overline{P}_2 = \overline{P}_1 (q_2/q_1)$

in which

F = frequency, cps

 (d_1/d_2) = model scale factor (0.055)

v = free stream velocity, ft/sec

q = dynamic pressure, 1b/in.²

 \overline{P} = root-mean-square pressure, lb/in.²

1 = subscript denoting sub-scale model value

2 = subscript denoting full-scale model value

V. DATA TRANSMITTAL

Four copies of the final tabulated data are required and should be distributed as follows:

1. Letter of transmittal and (2) copies of the data (one copy reproducible) including Tunnel Run Log, to:

North American Aviation, Inc.
Space and Information Systems Division
12214 Lakewood Boulevard
Downey, California
Attn: Mr. Edwin C. Allen, Dept. 695-223

2. Letter of transmittal and (1) copy of the data including Tunnel Run Log to:

NASA Manned Spacecraft Center Apollo Spacecraft Project Office Office City, Gulf Freeway Houston, Texas Attn: Mr. Calvin H. Perrine

3. Letter of transmittal and (1) copy of the data including Tunnel Run Log to:

NASA Manned Spacecraft Center Spacecraft Technology Division Aerodynamic Branch Houston, Texas Attn: Mr. W. C. Moseley, Jr.

North American Aviation, Inc. has a contractual obligation to provide NASA with a preliminary report containing tabulated data, thirty days after the completion of each test. In order to meet this requirement it will be necessary to have the complete set of data noted in (1) above delivered to NAA not later than ten working days after the completion of the test. In addition to the tabulated data, it is desired that tabulated data IBM cards containing the same information be made available to NAA at that time. A copy of the raw data in magnetic tape form is also required.

Table 1. Location of Static Pressure Instrumentation

		ф					
Orifice	X/ _D	0 °	45°	90°	135°	180°	
Station	Ъ	Model Orifice Numbers					
0	0	01					
1	0.090	11	13	15	17	19	
2	0.180	21	23	2 5	27	29	
3	0.260	31	33	35	37	39	
4	0.340	41	43	45	47	49	
5	0.430	51	53	55	57	59	
6	0.500	61	63	65	67	69	
7	0.560	71	73	75	77	79	
8	0.670	81	83	85	87	89	
9	0.695	91	93	9.5	97	99	
10	0.720	101	103	105	107	109	
11	0.750	111	113	115	117	119	
12	0,880	121	123	125	127	129	
13	0.950	131	133	135	137	139	
14	1, 100	141	143	145	147	149	
15	1.200	151	153	155	157	159	
16	1.320	161	163	165	167	169	
17	1.400	171	17.3	175	177	179	
18	1.500	181	183	185	187	189	
19	1.600	191	193	195	197	199	
20	1.700	201	203	205	207	209	
21	1.800	211	213	215	217	219	
22	1,950	221	223	225	227	229	
23	2. 100	231	233	235	237	239	
24	2. 160	241	243	245	247	249	
25	2. 220	251	253	255	257	259	
26	2.400	261	263	265	267	269	
27	2.600	271	273	275	277	279	
28	2,800	281	283	285	287	289	
29	3, 000	291	293	295	297	299	
30	3, 200	301	303	305	307	309	
31	3.400	311	313	315	317	319	
32	3, 600	321	323	325	327	329	
33	3.800	331	333	335	337	339	
34	4.000	341	343	345	347	349	

Table 1. Location of Static Pressure Instrumentation (Cont)

		φ						
Orifice	x/ _D	0 °	45°	90°	135°	180°		
Station	' D	Model Orifice Numbers						
35	4.130	351	353	355	357	359		
36	4.190	361	363	365	367	369		
37	4.250	371	373	375	377	379		
38	4.380	381	383	38.5	387	389		
39	4,500	391	393	395	397	399		
40	4.700	401	403	405	407	409		
41	4.900	411	413	415	417	419		
42	5. 100	421	423	425	427	429		
43	5.300	431						
44	5.500	441						
45	5,700	451			1			
46	5.900	461						
47	6. 100	471						
48	6. 300	481						
49	6. 500	491		1				
50	6.700	501						
51	6.900	511				ŀ		
52	7, 100	521						
53	7.300	531						
54	7.500	541						
55	7.700	551						
56	7.900	561						
57	8.100	571						
.58	8.300	581						
59	8.500	591						
60	8.700	601						
61	8. 900	611						

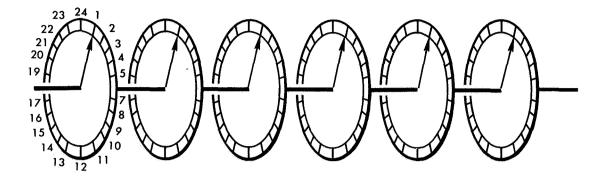


Table 2. Connection Format For Scanivalve Number 1

	Valve Module Number							
Switch Position	1	2	3	4	5	6		
			Orifice N	umbers				
1	01	11	13	15	17	19		
2	33	35	37	39	41	43		
3 .	57	59	61	63	65	67		
4	81	83	8.5	87	.8 9	91		
5 6	105	107	109	111	113	115		
6	129	131	133	135	137	139		
7	153	155	157	159	161	163		
8	177	179	181	183	185	187		
9	201	203	205	207	209	211		
10	225	227	229	231	233	235		
11	249	251	253	255	257	259		
12	273	275	277	279	281	283		
13	297	299	301	303	305	307		
14	321	323	325	327	329	331		
15	345	347	349	351	353	355		
16	369	371	373	375	<i>5</i> 77	379		
17	393	395	397	399	401	403		
18	417	419	421	423	425	427		
19	481	491	501	511	521	531		
20	601	611	R11	R12	R13	R14		
21	R22	R23	R24	P.25	R26	R27		

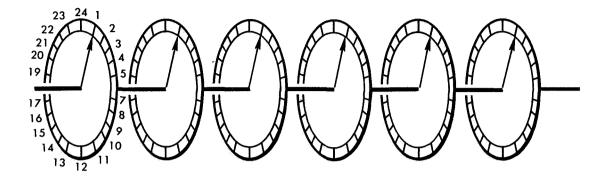


Table 3. Connection Format For Scanivalve Number 2

G. t. 1	Valve Module Number							
Switch Position	1	2	3	4	5	6		
			Orifice Nu	ımbers				
1	21	23	25	27	29	31		
2	45	47	49	51	53	55		
3	69	71	73	75	77	79		
4	93	95	97	99	101	103		
5	117	119	121	123	125	127		
6	141	143	145	147	149	151		
7	165	167	169	171	173	175		
8	189	191	193	195	197	199		
9	213	215	217	219	221	223		
10	237	239	241	243	245	247		
11	261	263	265	267	269	271		
12	285	287	289	291	293	295		
13	309	311	313	315	317	319		
14	333	335	337	339	341	343		
15	357	359	361	363	365	367		
16	381	383	385	387	389	391		
17	405	407	409	411	413	415		
18	429	431	441	451	461	471		
19	541	551	561	571	581	591		
20	R15	R16	R17	R18	R19	R21		
21	R28	R29						

Table 4. Location of Transient Pressure Instrumentation

	Axial I	Location	1	Recorder		
Measurement Number	X	Xa	φ deg	Mode	Channel	
Pl	3. 261	1074.43	180	${ m FM}$	1	
P2	3. 261	1074.43	0	FM	2	
P3	5. 251	1038.25	180	FM	3	
P4	5. 251	1038.25	255	FM	4	
P5	5. 251	1038.25	0	FM	5	
P6	6.945	1007.45	180	FM	6	
P 7	6. 945	1007.45	0	FM	7	
P8	8.555	978.18	180	FM	8	
P10	10.672	939.69	180	FM	9	
P11	10.672	939.69	135	FM	10	
P13	17.194	821.10	180	FM	11	
P15	19.396	781.07	180	FM	12	
P20	36.590	468.44	180	FM	13	
VOICE				FM	14	
P9	8.555	978.18	135	AM	1	
P12	15.754	847.28	180	AM	2	
P14	17.194	821.10	0	AM	3	
P16	19.396	781.07	0	AM	4	
P17	21.514	742.56	180	AM	5	
P18	27.612	631.68	180	AM	6	
P19	34.388	508.48	180	AM	7	
Al	5. 251	1038.25	75	AM	8	
A2	8.555	978.18	0	AM	9	
A3	8. 555	978.18	315	AM	10	
A4	10.672	939.69	0	AM	11	
A5	10.672	939.69	315	AM	12	
A6	27.612	631.68	270	AM	13	
VOICE	:		_	AM	14	
Noise Probe		_		FM/AM	1	

Note: P - Photocon Transducers

A - Atlantic Research Transducers

Table 5. Run Schedule

Run	Configuration	M	α
· 1	1-(E ₆₆ T ₂₉ C ₄₂ S ₇ B ₉ I ₃ R ₆)	0.50	А
2	↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑	0.70	В
3		0.80	A
4		0.85	В
5		0.90	. A
6		0. 95	Α
7		1.00	В
8	↓	1. 15*	B*
9	$1-(E_{66}T_{29}C_{42}S_7B_9I_3R_6)$	1. 35	A
10	$2-(E_{66}T_{29}C_{42}S_{7R}B_{9}I_{3}R_{6})$	0, 80	A
11	1	0.85	В
12	1	0.90	A
13	2-(E ₆₆ T ₂₉ Č ₄₂ S _{7R} B ₉ I ₃ R ₆)	0. 95	A
14	$3-(M_1C_{42}S_7B_9I_3R_6)$	0.70	0°
15	l	0.80	1
16		0.90	
17	1	1.00	
18	3-(M ₁ C ₄₂ S ₇ B ₉ I ₃ R ₆)	1.35	ŏ°
19	$1-(E_{66}T_{29}C_{42}S_7B_9I_3R_6)$	1.55	A
20	1	1.80*	B*
21		2.00	A
22	1 1	2.40	A
23	2-(E ₆₆ T ₂₉ Č ₄₂ S _{7R} B ₉ I ₃ R ₆)	1.55	A
24	2-(E ₆₆ T ₂ 9C ₄₂ S _{7R} B ₉ I ₃ R ₆)	2.00	A
25	3-(M ₁ C ₄₂ S ₇ B ₉ I ₃ R ₆)	1.55	0.
26	1	1.80	1 1
27	1	2.00	1
28	$3-(M_1C_{42}S_7B_9I_3R_6)$	2. 40	ŏ°

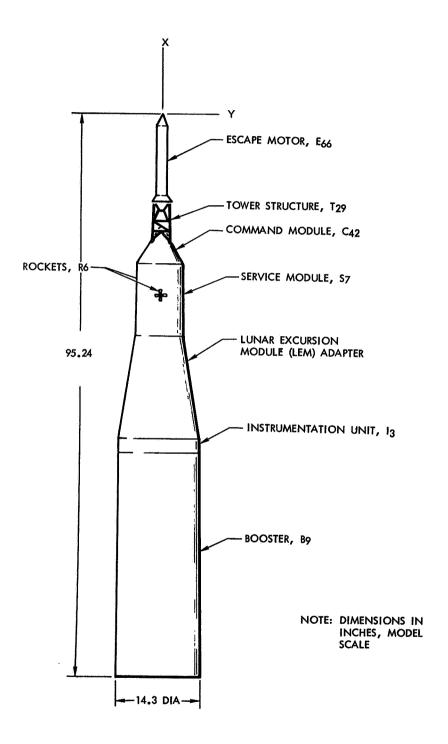
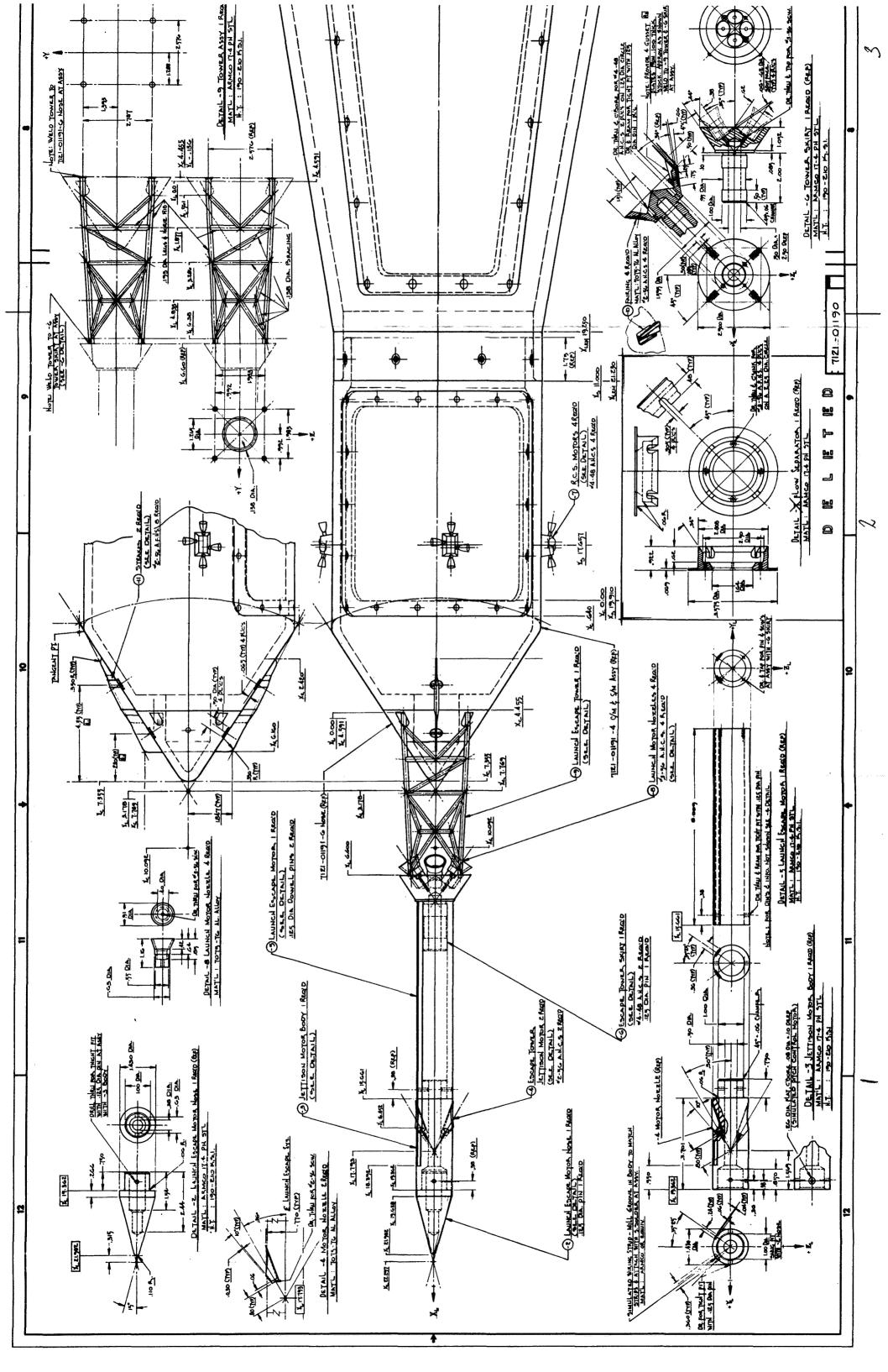
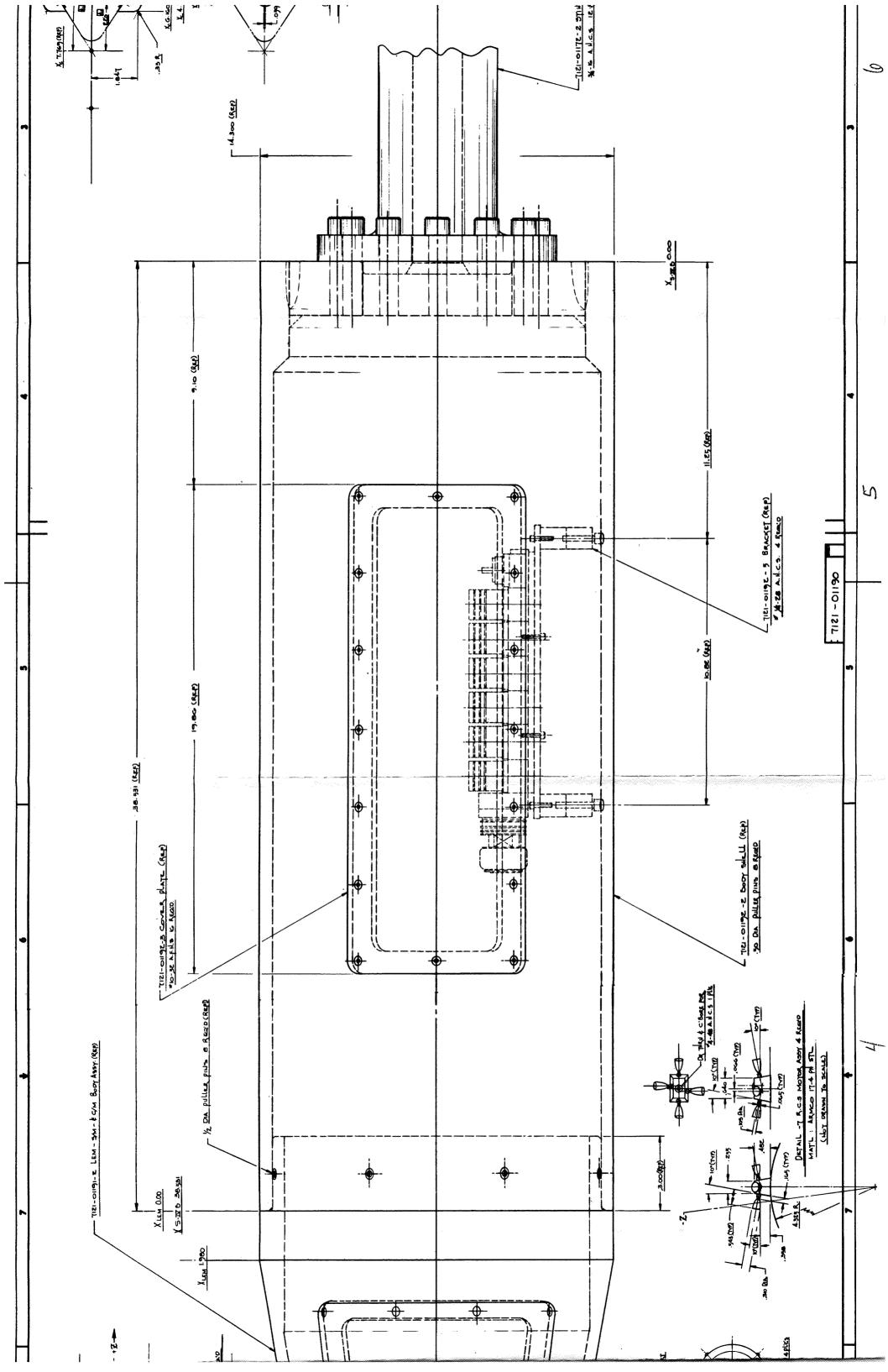
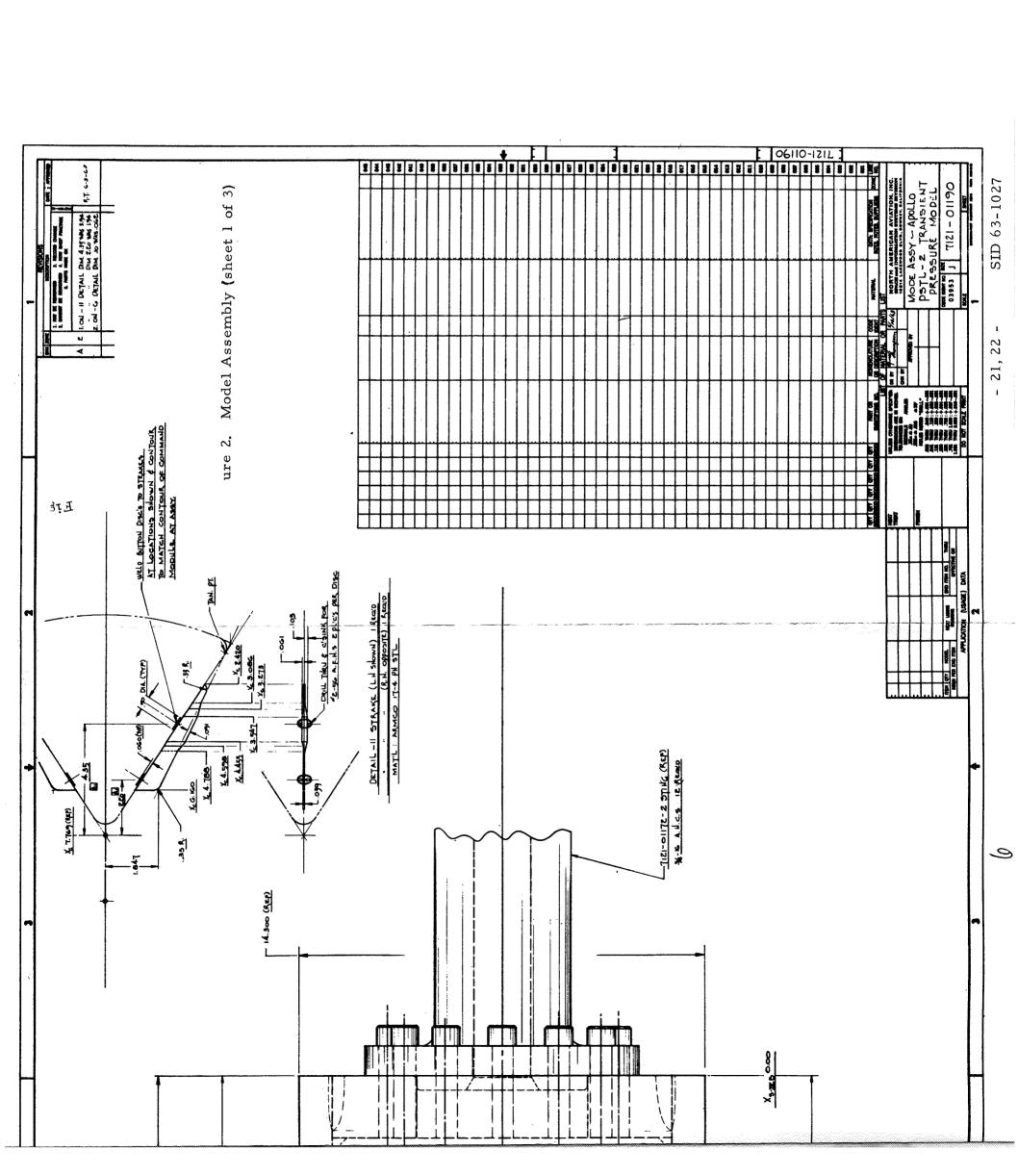
^{*} Schlieren Photos at α = -4, 0, 4, 9, 15 degrees α Schedule

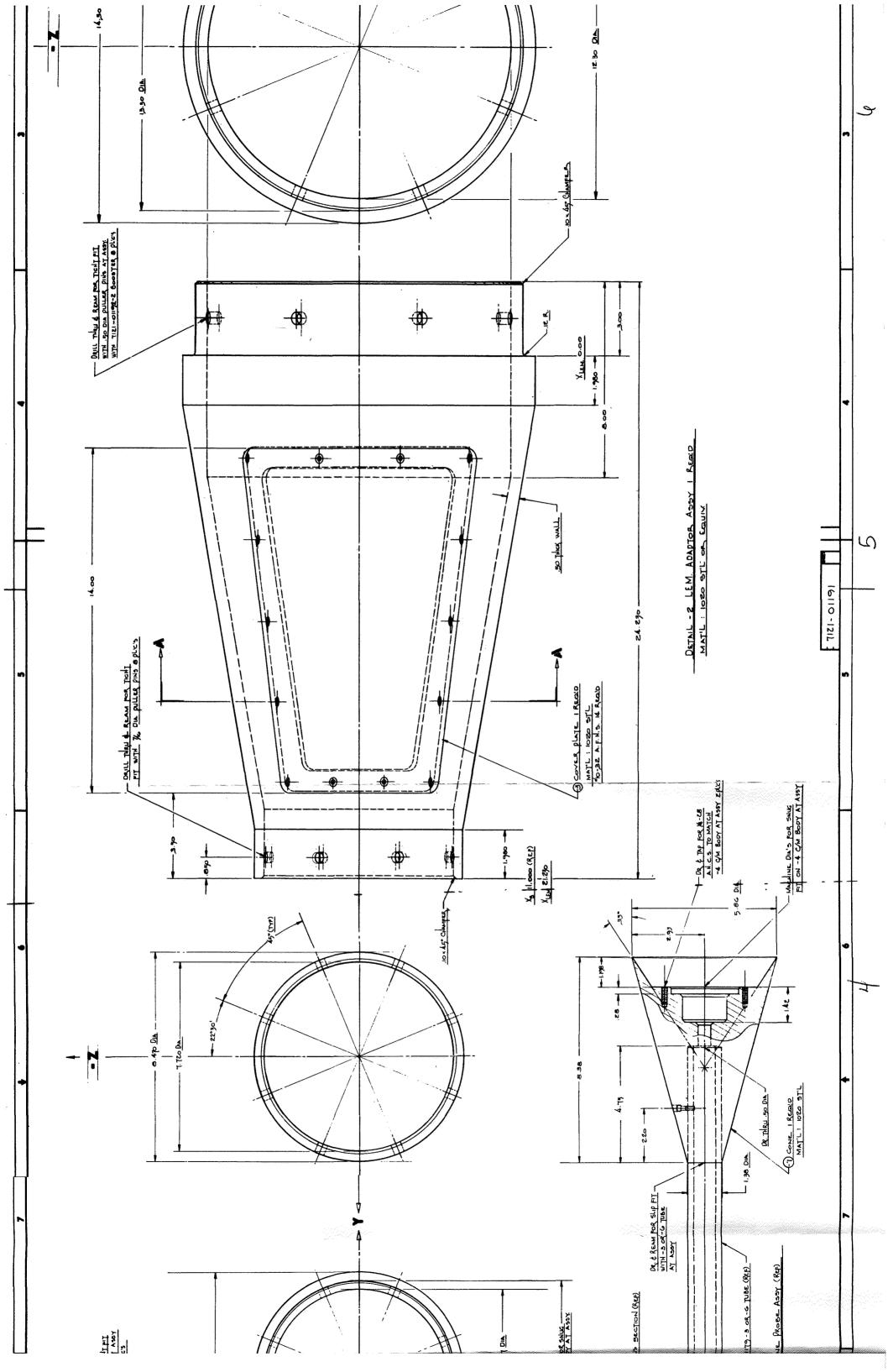
A: $\alpha = 0$, 2, 4, 6, 9, 12, 15 degrees

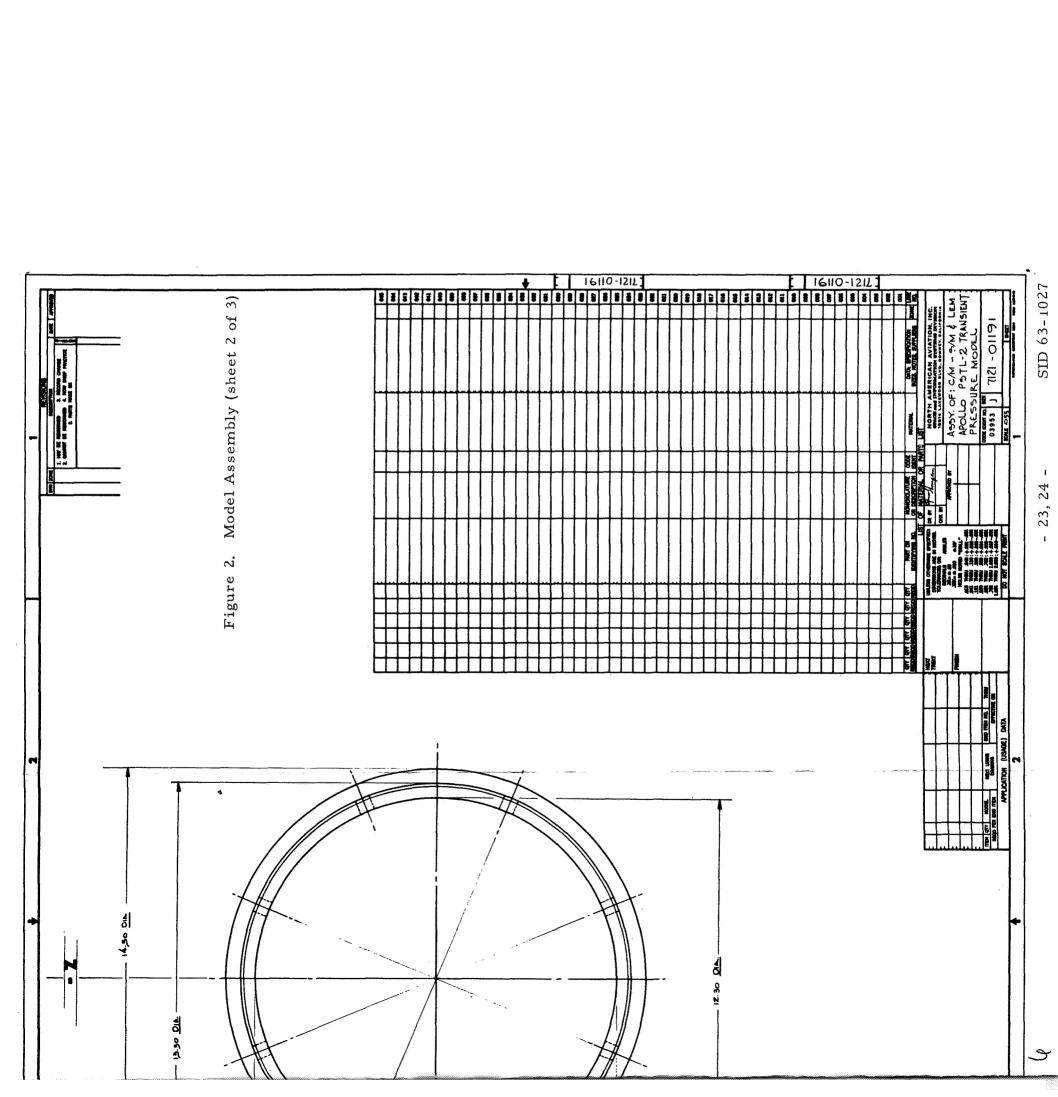
B: $\alpha = -4$, 0, 2, 4, 6, 9, 12, 15 degrees

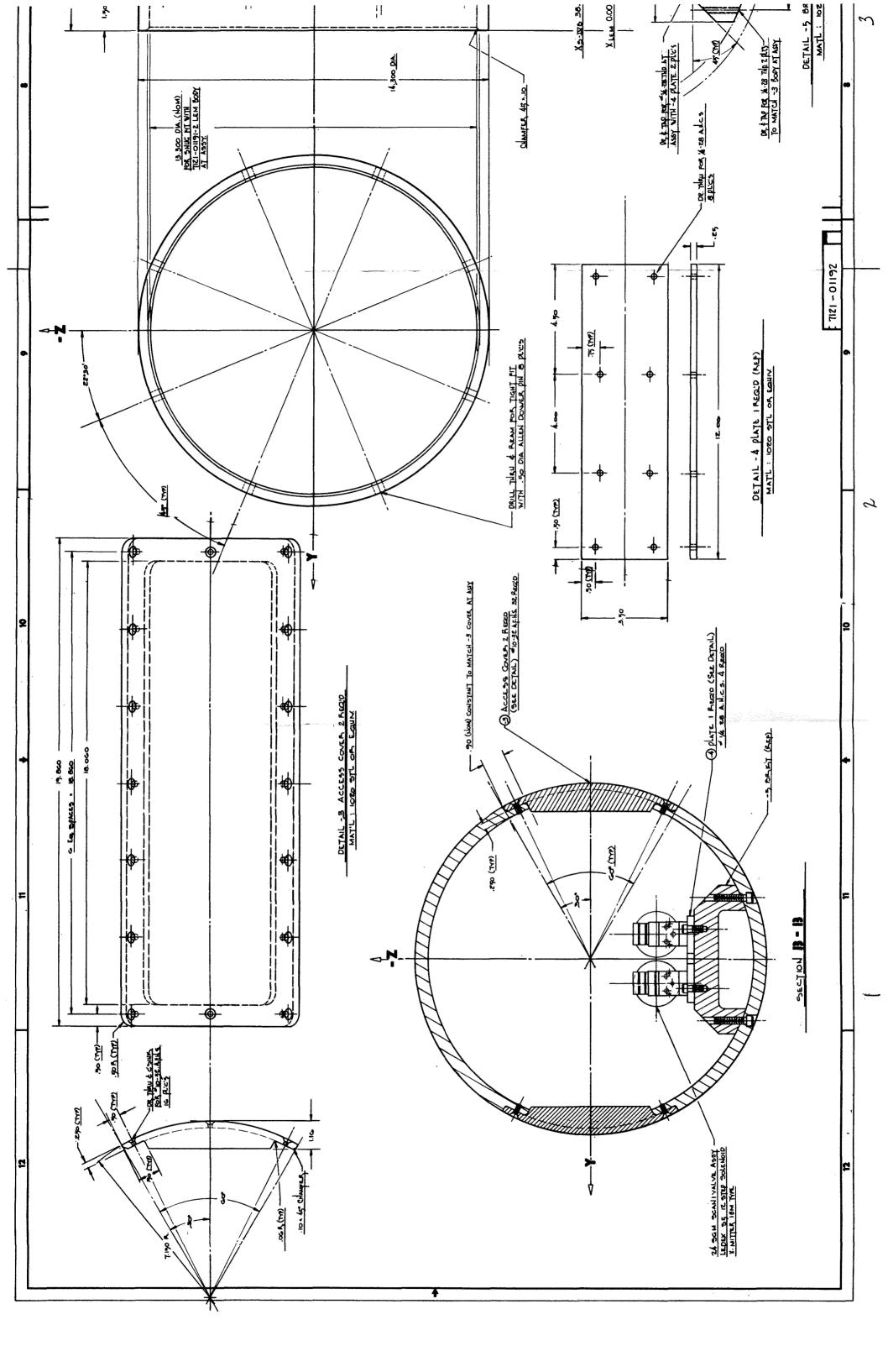
Table 6. Steady-State Pressure Coefficient Listing Format

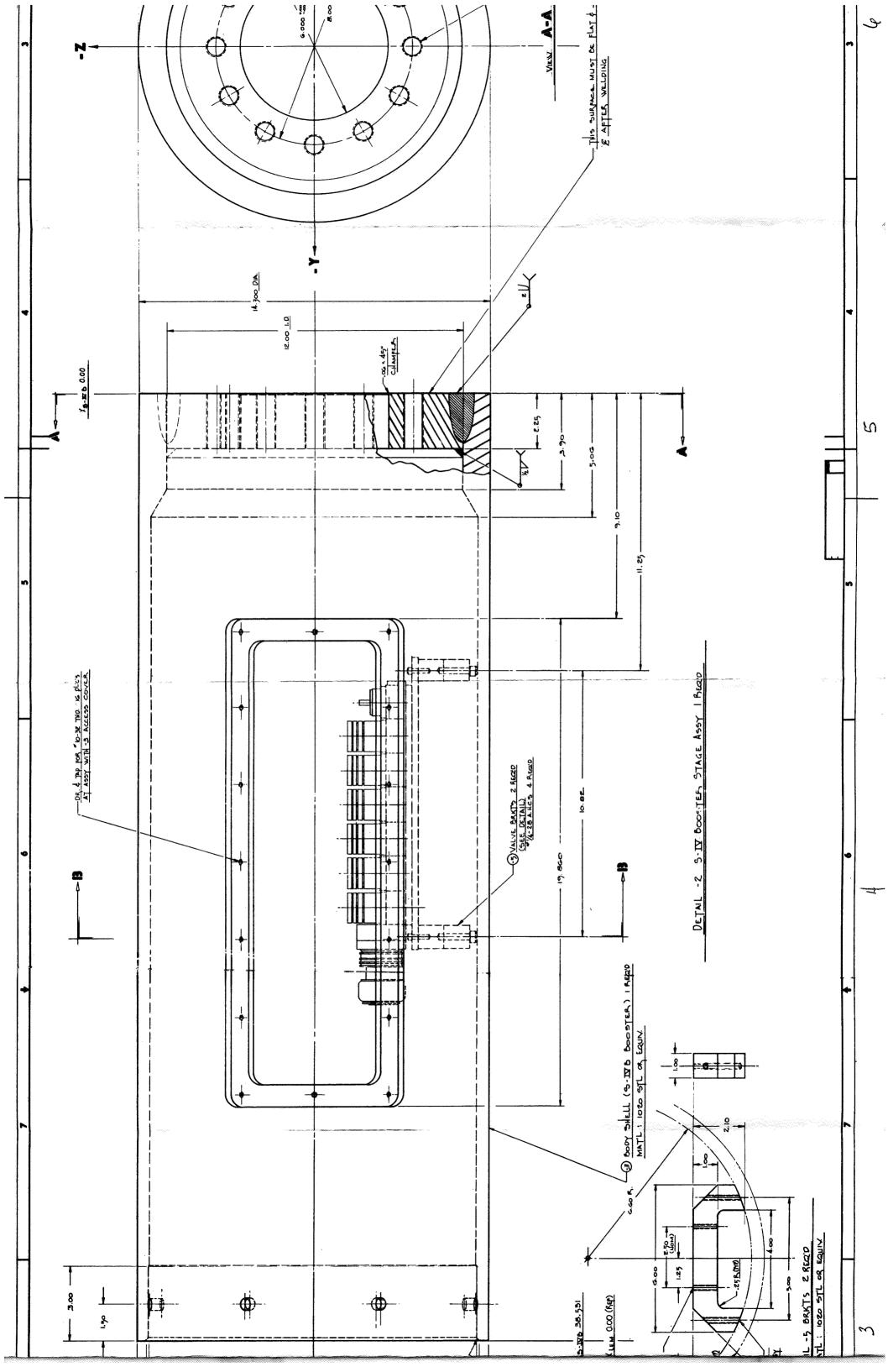
-	3	4	រព	9	7	8	6	10	11	12	13	14	1.5	16	17	18	13	20
Tunnel Te	Ĕ	Test	Phase	Run	×	ъ	Re × 10-6	Config	ಕ	Ø.								
45°		90.	135*	180°		φ _Q /x	.0	45°	•06	135°	180*		Θ _{Ω/x}	.0	45°	°06	135°	180°
C _p 001						1,200	Cp151	Cp153	Cp155	Cp157	Cp159		3,000	Cp291	Cp293	Cp295	Cp297	Cp299
Cp011 Cp013		Cp015	Cp017	Cp019		1,320	Cp161	Cp163	Cp165	Cp167	Cp169		3.200	Cp301	Cp303	Cp305	Cp307	Cp309
Cp021 Cp023		Cp025	Cp027	Cp029		1.400	Cp171	Cp173	Cp175	Cp177	Cp179		3.400	Cp311	Cp313	Cp315	Cp317	Cp319
Cp031 Cp033		Cp035	Cp037	Cp039		1.500	Cp181	Cp183	Cp185	Cp187	Cp189		3,600	Cp321	Cp323	Cp325	Cp327	Cp329
Cp041 Cp043		Cp045	Cp047	Cp049		1.600	Cp191	Cp193	Cp195	Cp197	Cp199		3,800	Cp331	Cp333	Cp335	Cp337	Cp339
Cp051 Cp053		Cp055	Cp057	Cp059		1.700	Cp201	Cp203	Cp205	Cp207	Cp209		4.000	Cp341	Cp343	Cp345	Cp347	Cp349
Cp061 Cp063		Cp065	Cp067	Cp069		1.800	Cp211	Cp213	Cp215	Cp215 Cp217	Cp219		4.130	Cp351	Cp353	Cp355	Cp357	Cp359
Cp071 Cp073		Cp075	Cp077	Cp079		1,950	Cp221	Cp223	Cp225	Cp227 Cp229	Cp229		4.190	Cp361	Cp363	Cp365	Cp367	Cp369
Cp081 Cp083	I	Cp085	Cp087	Cp089		2,100	Cp231	Cp233	Cp235	Cp237 Cp239	Cp239		4.25	Cp371	Cp373	Cp375	Cp377	Cp379
Cp091 Cp093	1	Cp095	Cp097	Cp099		2.160	Cp241	Cp243	Cp245	Cp245 Cp247	Cp249		4.38	Cp381	Cp383	Cp385	Cp387	Cp389
Cp101 Cp103		Cp105	Cp107	Cp109		2.220	Cp251	Cp253	Cp255	Cp255 Cp257	Cp259		4.50	Cp391	Cp393	Cp395	Cp397	Cp399
Cp111 Cp113		Cp115	Cp117	Cp119		2,400	Cp261	Cp263	Cp265	Cp265 Cp267 Cp269	Cp269		4,70	Cp401	Cp403	Cp405	Cp407	Cp409
Cp121 Cp123		Cp125	Cp127	Cp129		2,600	Cp271	Cp273	Cp275	Cp277 Cp279	Cp279		4.90	Cp411	Cp413	Cp415	Cp417	Cp419
Cp131 Cp133		Cp135	Cp137	Cp139		2,800	Cp281	Cp283	Cp285	Cp287	Cp289		5.10	Cp421	Cp423	Cp425	Cp427	Cp429
Cp141 Cp143		Cp145	Cp147	Cp149														
							DAT.	DATA FOR TAPS	raps at	6	.0							
5.300 5.500		5.700	5.900	6.100	6.300	6,500	6.700	9.900	7.100	7.100 7.300	7.500	7.700	7.900	8.100	8,300	8.500	8,700	8.900
Cp431 Cp441		Cp451	Cp461	Cp471	Cp481	Cp491	Cp501	Cp511	Cp521	Cp531	Cp541	Cp551	Cp561	Cp571	Cp581	Cp591	Cp601	Cp611
			RAKE	RAKE DATA														
0.020 0.080		0.140	0.200	0.300	0.400	0.550	0.700	006.0										
Cp12		Cp13	Cp14	Cp15	Cp16	Cp17	Cp18	Çp19										
Cp22		Cp23	Cp24	Cp25	Cp26	Cp27	Cp28	Cp29										

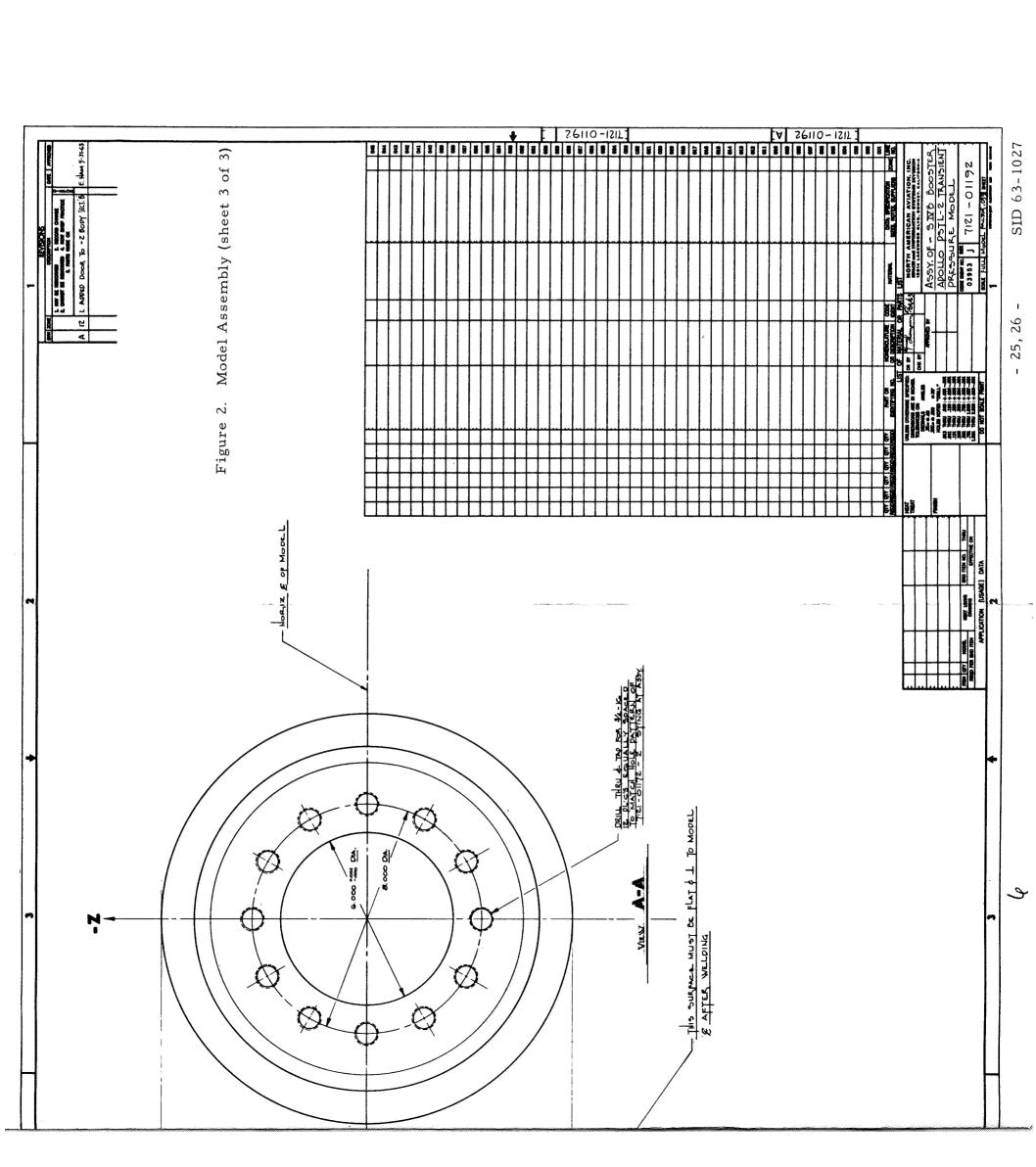





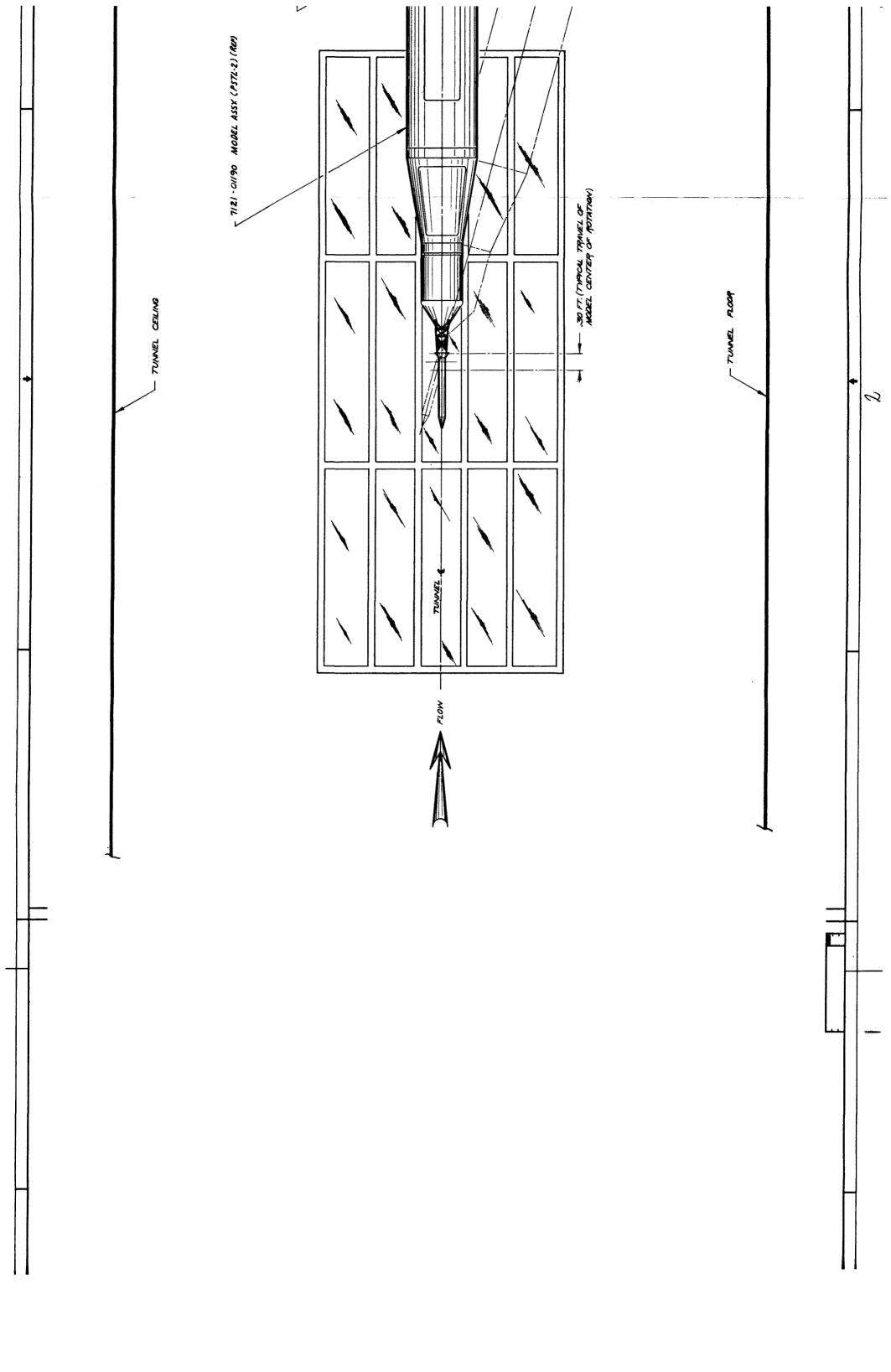


Figure 1. Configuration Sketch

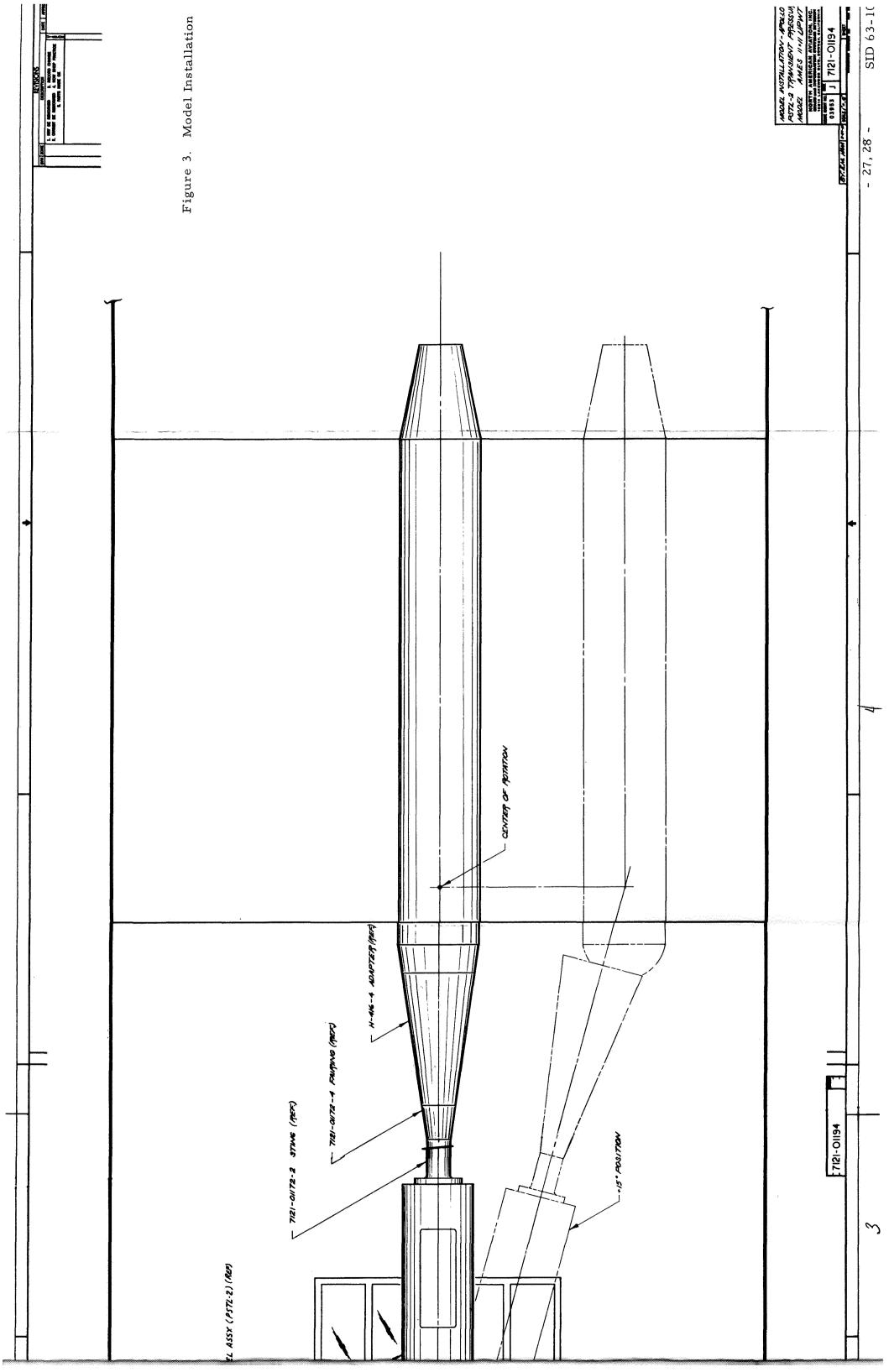


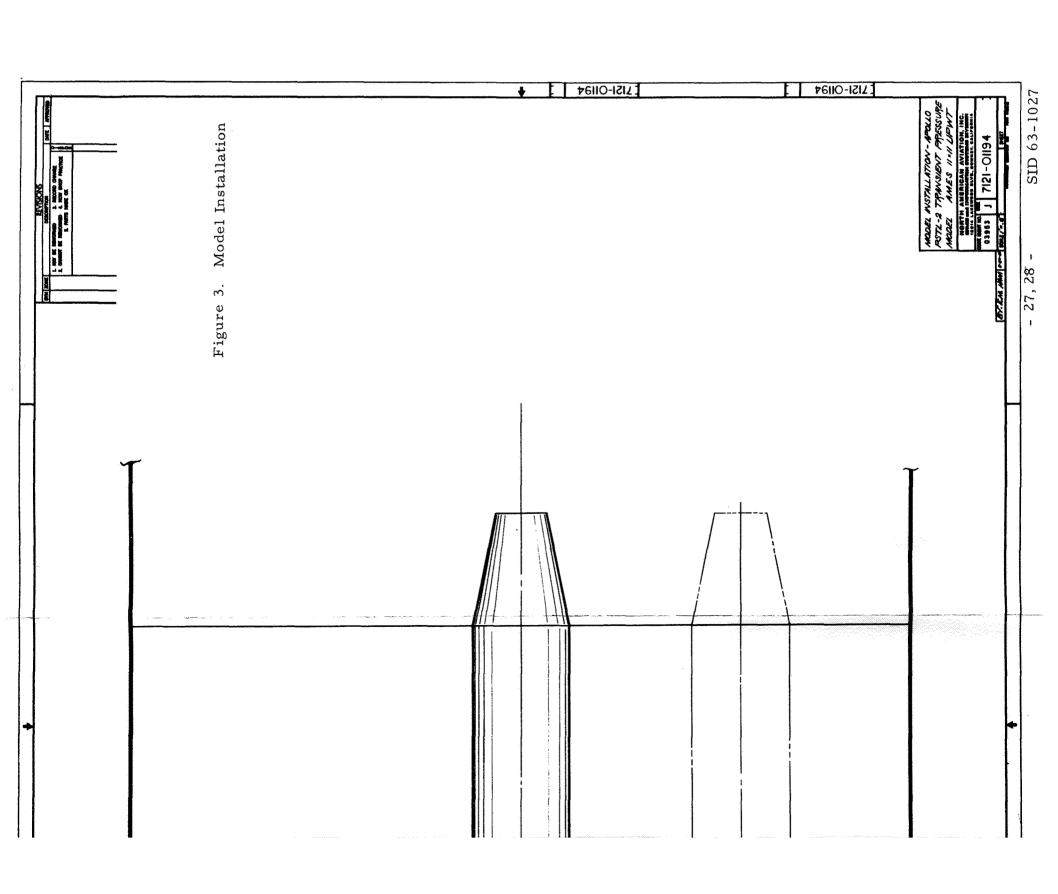


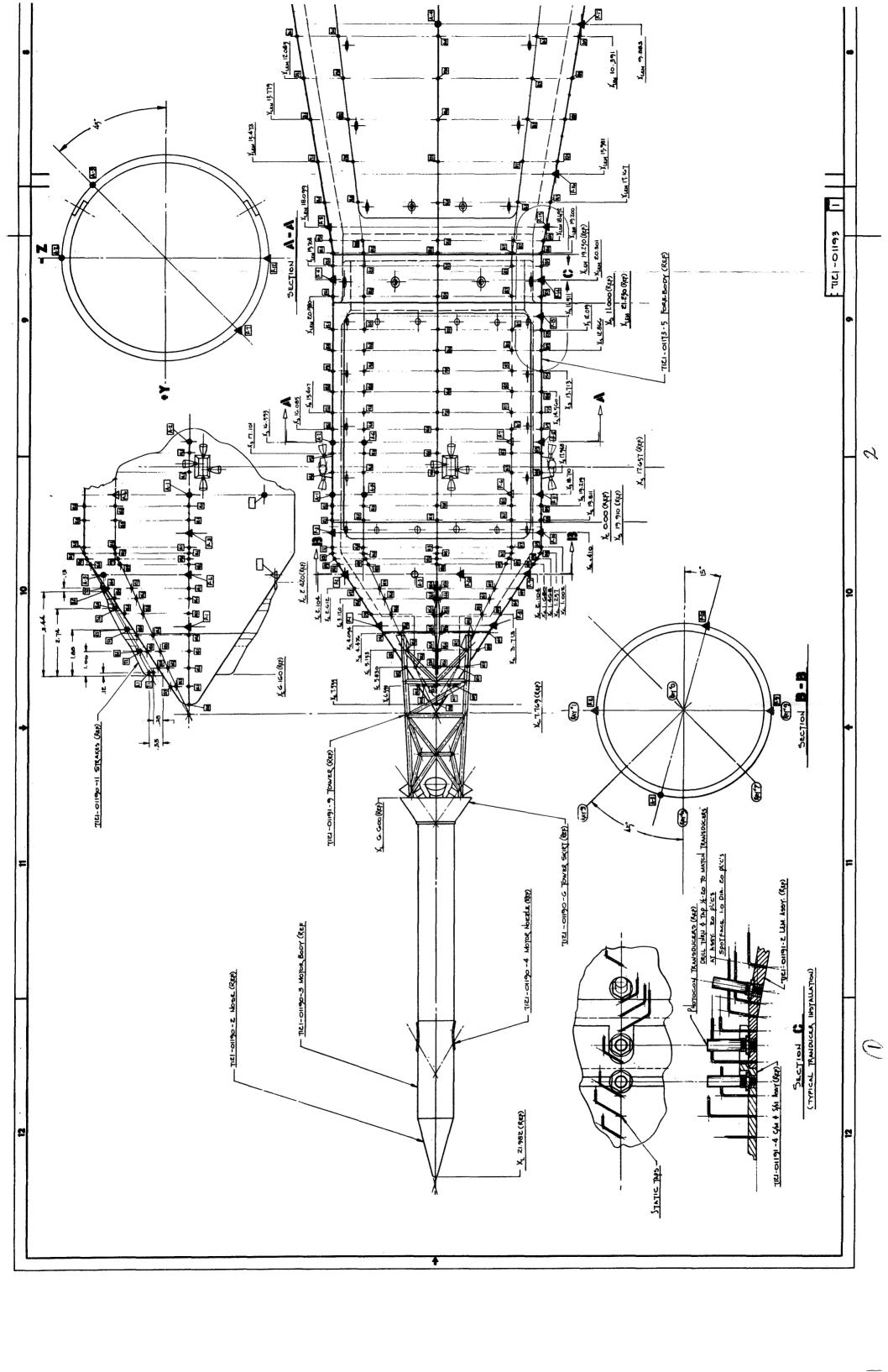


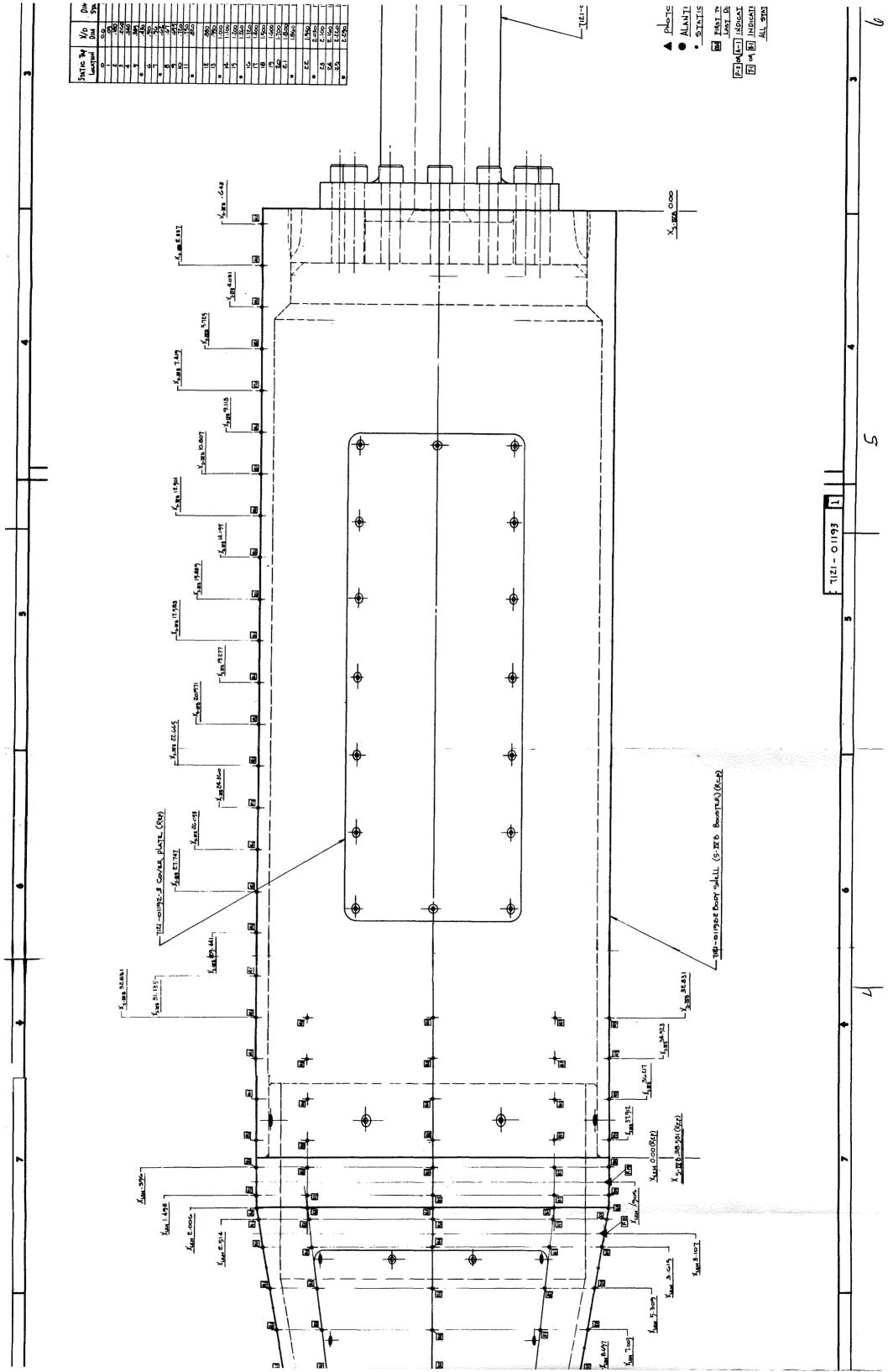


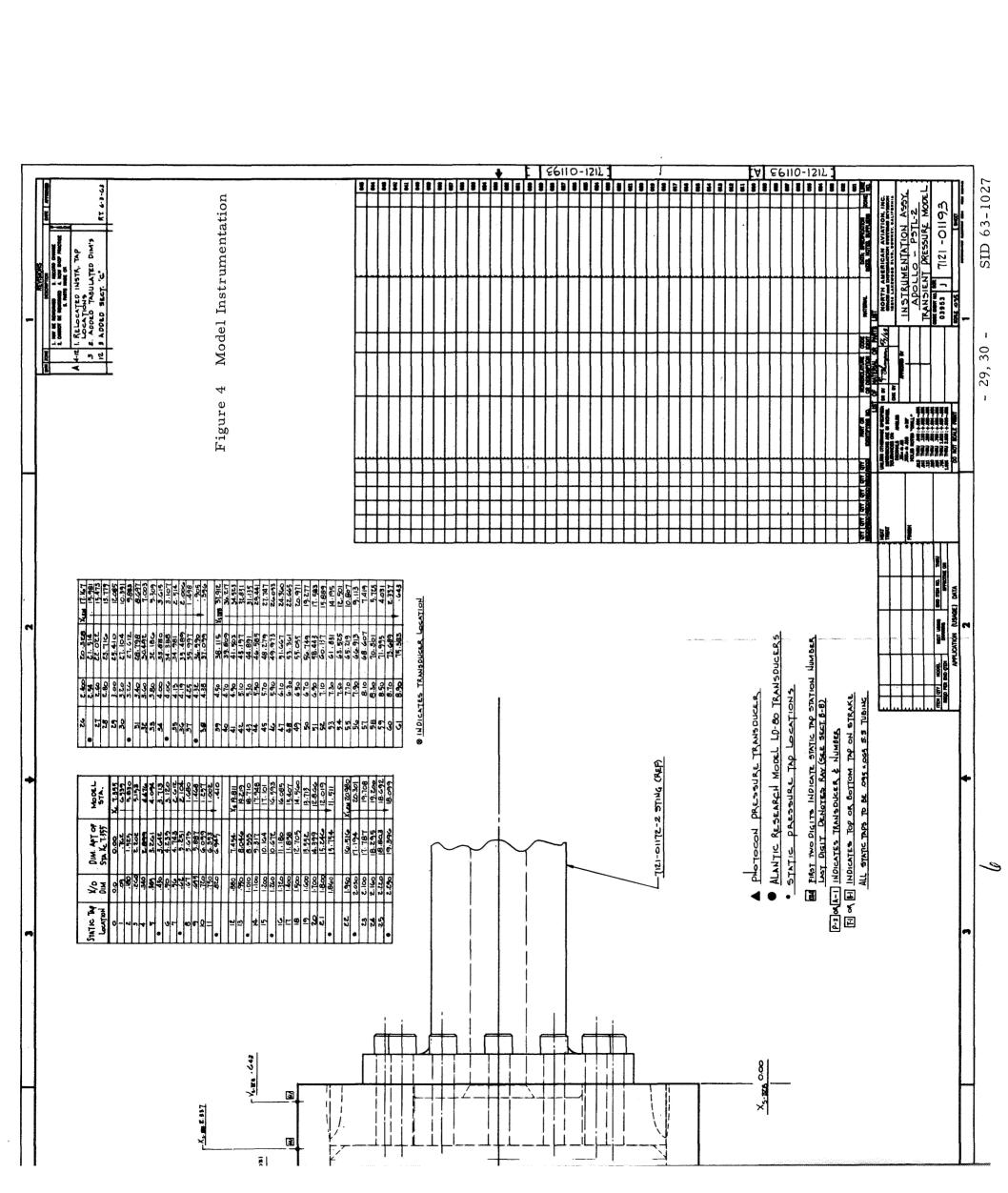


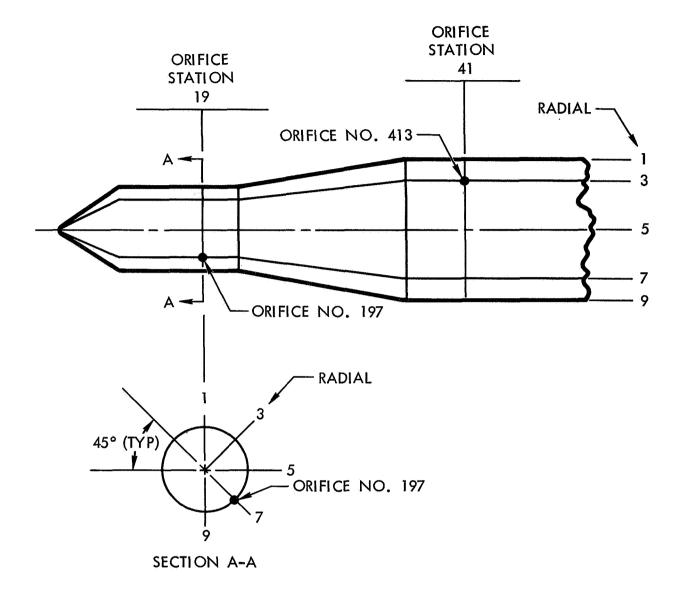












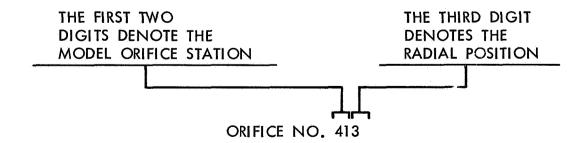
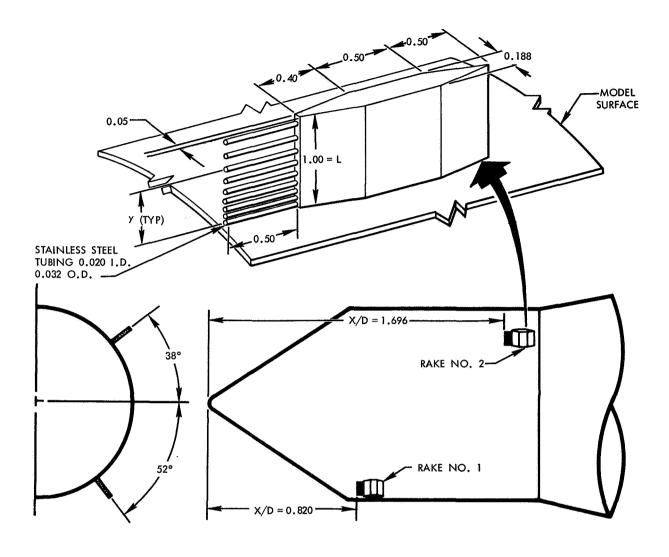



Figure 5. Orifice Numbering System

RAKE	X/D	ø	y/L	ORIFICE NO.
1	0.820	218°	0.020	R11
A	A .	A	0.080	R12
			0.140	R13
1		1	0.200	R14
1		i	0.300	R15
•	1 1 1		0.400	R16
	1 1		0.550	R17
*	1 + 1	₹	0.700	R18
1	0.820	218°	0.900	R19
2	1.696	308°	0.020	R21
1	1 4 1	1	0.080	R22
			0.140	R23
1		1	0.200	R24
I		1	0.300	R25
		1	0.400	R26
1	1 1 1	1	0.550	R27
<u> </u>		<u>, , , , , , , , , , , , , , , , , , , </u>	0.700	R28
2	1.696	308°	0.900	R29

Figure 6. Boundary Layer Rakes